TRUST

Innovative planning tools for water management in water-scarce regions

> Christian D. León University of Stuttgart

How to achieve SDG 6 in water-scare regions of the world?

Lima/Peru

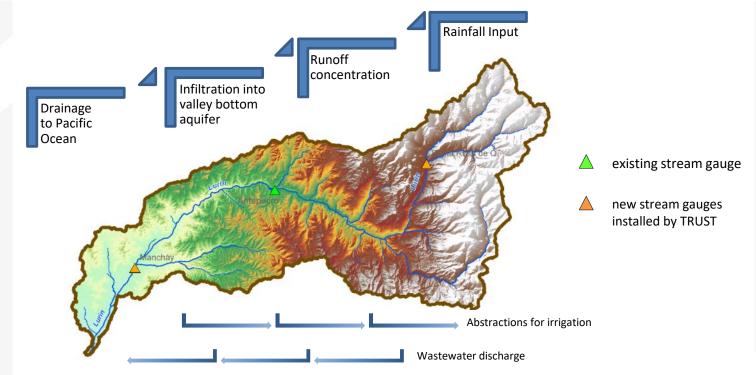
- economic growth region
- high population growth
- increasing water demand
- water use conflicts
- unequal access to safe drinking water and sanitation services
- complex governance structure

TRUST approach

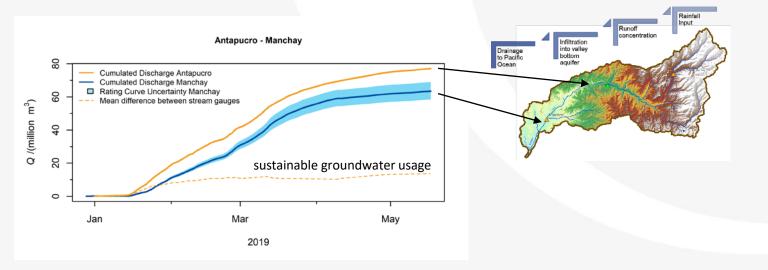
	Water resources	Water use	Water management
Information base	hydro-meteorology, land use and land cover, soils and geology, topography, water quality	user groups, perceptions, practices, infrastructure, supply, water extraction, consumption	governance, policies, stakeholder assessments, drinking water standards, wastewater reuse
Analysis and concepts	hydrological modelling, water budget, remote sensing, risk assessment	stakeholder analysis, water conflicts, PINCH, quality and quantity specifications	reuse-concepts, evaluation criteria, aquifer recharge, policy mixes, SDG-assessment

Integrated water management concepts for achieving the Sustainable Development Goals (SDGs) in prosperous water-scarce regions

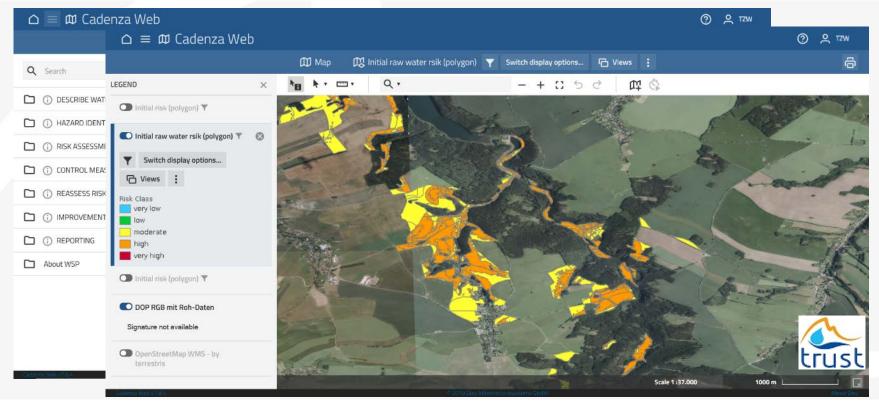
Wate	er resources


Water resources

- Lurin River: strong seasonality, incomplete monitoring
- new monitoring stations for rainfall and discharge
- hydrological modelling
- remote sensing
- WSP-Tool: innovative tool for risk assessment at catchment level


Hydrology of the Lurin River

Quantification of available Water Resources


- two stream gauges (Antapucro and Manchay) allows to estimate
 - amount of infiltrated river / sustainable groundwater usage
 - water drainage to Pacific Ocean / unused water resources

WSP-Tool: interactive tool for risk assessment on catchment level

→ Video/webinar

|--|--|--|--|

Water use

Water use

- water users: stakeholder analysis, objectives and policies
- policy mix design: newly developed policy-interaction modelling approach to analyze synergies and trade-offs between different objectives of different water users on the level of interactions between instruments and measures
- tested within **participatory processes** involving stakeholders from entire catchment
- for strategic planning of sustainable water use

Policy-interaction matrix for the Lurin catchment

 \rightarrow Webinar

Kosow et al. 2020 in prep.; visualization inspired by Weitz et al. 2019

Analyzing inconsistencies within the status quo policy mix

"inconsistent policy" = does not follow the networks impact logic (measured by CIB impact balances; more arguments for alternatives)

Key findings:

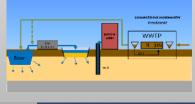
- groundwater abstraction by several users
 - \rightarrow water quantity conflicts
- insufficient wastewater treatment (domestic and industrial)
 → water quality conflicts

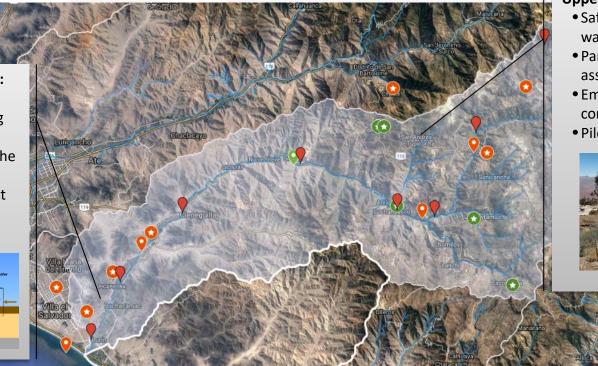
-		
	H	
		٦

Water management

- integrated solutions for drinking water supply and wastewater treatment, adapted to local boundary conditions
- capacity building (operator) and awareness-rising (user)
- concepts for reuse of treated wastewater for managed aquifer recharge

Sedapal



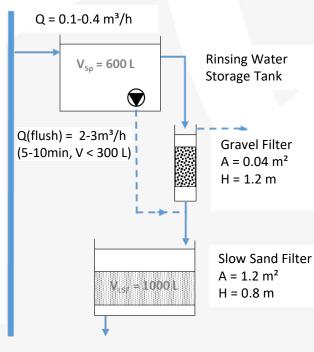


Case study: concepts for the Lurin River catchment

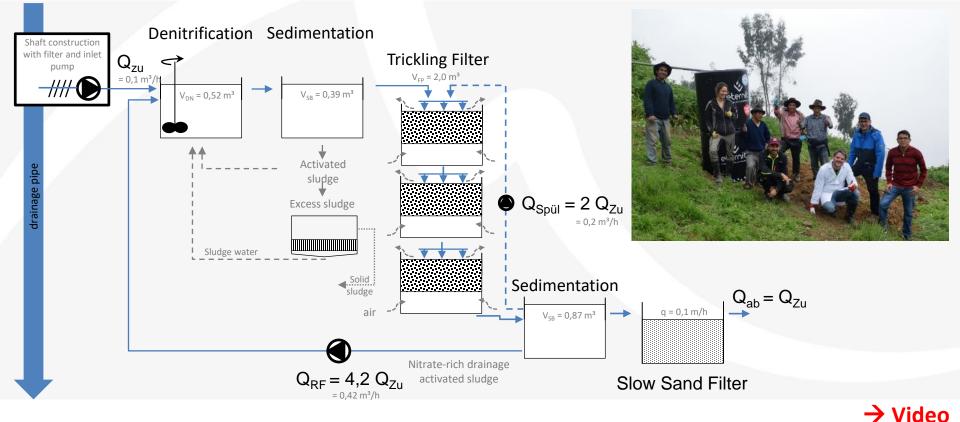
Reuse potential lower area:

- Agriculture: irrigation
- Industry: process/cooling
- Infiltration to prevent seawater intrusion into the aquifer
- Aquifer recharge: indirect reuse as drinking water, irrigation, industry, ...

Upper area:


- Safe drinking water and wastewater treatment
- Participatory assessment
- Empowerment of communal organisation
- Pilot plant testing

Upper catchment: safe drinking water supply


existing drinking water pipeline

Upper catchment: safe wastewater disposal

- 1. Field work remains necessary for data on water quantity and water quality. Remote sensing data and derived products using machine learning (ML) to increase data availability still requires further research.
- 2. Policy-interaction modelling is a useful starting point for integrated water planning processes, contributing to reduce goal conflicts, to meet the demand of all water users and to attain SDG 6.
- 3. Training and capacity building of local water service providers as well as awareness raising of the local water users are key factors for successful implementation and long-term operation of drinking water and wastewater treatment plants.
- 4. Implementation of participatory formats during the planning process allows gaining a sociotechnical perspective regarding innovative drinking and wastewater management concepts.

→ TRUST recommendations document (Marketplace)

Project partners

Universität Stuttgart	Center for Interdisciplinary Risk and Innovation Studies - ZIRIUS Institute for Sanitary Engineering, Water Quality and Solid Waste Management - ISWA	
Karlsruher Institut für Technologia	Institute for Water and River Basin Management - IWG Institute of Photogrammetry and Remote Sensing - IPF	
Technologiezentrum Wasser	TZW: DVGW-Technologiezentrum Wasser (Karlsruhe)	
📽 disy	Disy Informationssysteme GmbH (Karlsruhe)	
	decon international GmbH (Bad Homburg)	
°pp	Ingenieurbüro Pabsch & Partner Ingenieurgesellschaft mbH (Hildesheim)	
στ	OTT Hydromet GmbH (Kempten)	

Strategic partners in Peru

Christian D. León

- e-mail christian.leon@zirius.uni-stuttgart.de
- phone +49 (0) 711 685-83974
- website <u>www.trust-grow.de</u>

University of Stuttgart

Center for Interdisciplinary Risk and Innovation Studies

Seidenstr. 36, D-70174 Stuttgart

This project is sponsored by the Federal Ministry of Education and Research (BMBF) as part of the funding measure "Water as a Global Resource" (GRoW).

Muchas gracias!

