

Sustainable Solutions for Wastewater **Treatment**

Stephan Wasielewski

Bundesministerium

für Bildung

Goals of a sustainable water management

- Use of limited water resources should be sustainable
- Water supply has the highest priority
 - Qualitative requirements
 - Quantitative requirements
 - Monetary claims

Universität Stuttgart

- Sustainable implementation
- Robust and reliable techniques
- Minimal, if possible, no impact on the environment
- Wastewater treatment and removal
 - For hygienic reasons wastewater must be quickly removed from settlements
 - Wastewater Treatment aims for removal (of carbon/nitrogen/phosphorus compounds) and hygienisation
 - Wastewater should not negatively affect people and environment

Challenges for sustainable water management

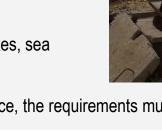
- Water resources are often extensively used in water scarcity regions (consumption >> supply)
 - Exploited sources are groundwater and surface water
- Many different users and actors are involved
 - Consumers
 - Stakeholders
 - Nature & environment

• Planning processes often have to be carried out based on insufficient data basis

Bundesministerium für Bildung

Tools & methods for achieving the goals

- Which data is required and available for planning?
- Which potential users for reclaimed water are available?
- What water qualities are required?
- Which technology can clean wastewater and transform it into reclaimed water?



Which water qualities are required?

- Drinking water quality:
 - mainly in residential areas,
 - in (food) processing industry,
 - industry in general
- Irrigation water:
 - mainly for agriculture,
 - nurseries,
 - city/community,
 - environmental system services,
 - private properties
- Effluent of WWTP:
 - water bodies such as rivers, lakes, sea
- Service water quality:
 - mainly from industry & commerce, the requirements must be considered case-specifically \rightarrow is not considered here...

🗉 disy

C M. Krauss

CATA R.

© M. Krauss

What wastewater qualities are due?

- Municipal wastewater
 - mixture of blackwater (faeces, urine, rinsing water) and greywater (from kitchen, bathroom)
 - Wastewater from small businesses, handicrafts, public administration
 - Wastewater from processed (small) businesses, e.g. slaughterhouses, bakeries, etc.

- Industrial wastewater
 - Wastewater from administration, toilets, etc.
 - Cooling water
 - Rinsing and cleaning water
 - Production wastewater (differs greatly from each other)

Universität Stuttgart

INGENIEURBÜRO PABSCH & PARTNER

für Bildung und Forschun

Which data is required and available for planning?

- The more, the better...
- 1st Priority: Check the Site!
- 2nd Priority: Measure yourself!
 - Old data can be outdated due to significant changes
 - Data quality can differ
 - How were the samples taken? Who took the samples?
- 3rd Priority: Fill in the gaps!
 - Only if data is not available or cannot be measured
 - Try to make a reasonable assumption

Comparison of data quality: grab samples vs. 2h mixed samples

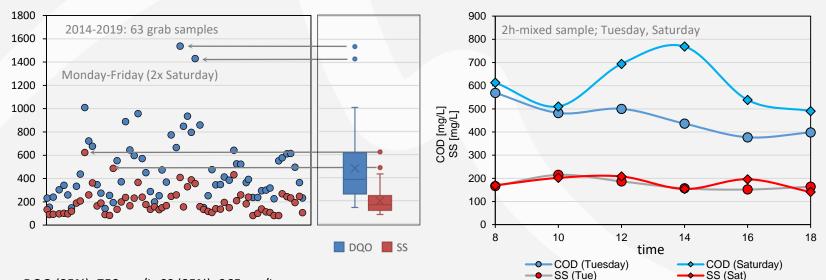
Grab samples

- Only taken once
- No statement about daily fluctuations
- Depending on the WWTP size hydraulic retention of wastewater is less than 24 h.

2h mixed samples

• 5 samples within 2h equally mixed

 no statement about seasonal fluctuations



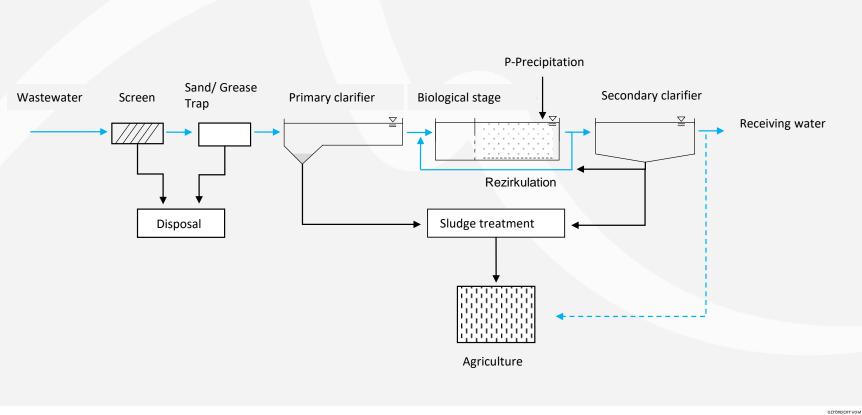
Comparison: Data quality of grab samples vs. 2h mixed samples

DQO (85%): 758 mg/L; SS (85%): 265 mg/L DQO (avrg.): 482 mg/L; SS (avrg.): 198 mg/L

Shock load? Daily variation?

DQO (85%): 713 mg/L; SS (85%): 204 mg/L Shock load DQO: Factor 1,3

-



(1) Activated sludge process

(1) Biological treatment with aerated ponds

insufficient oxygen supply due too few aerators; $O_2 < 2 \text{ mg/L}$

OFFORDERT VON

(1) Biological Treatment with activated sludge system

oxygen supply with diffusers; $O_2 > 4 \text{ mg/L}$

Hydromet

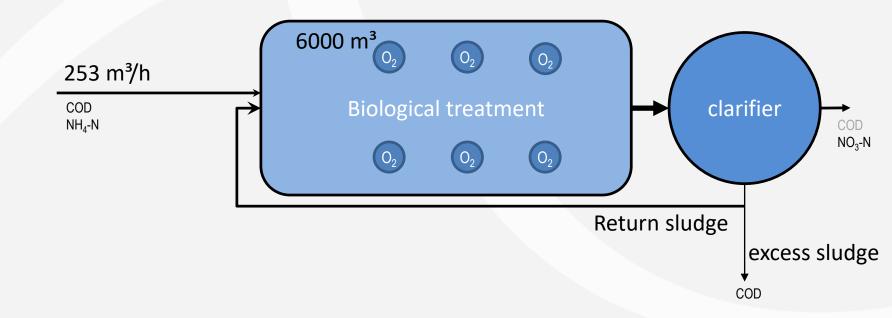
осголосят voм Bundesministerium für Bildung

Bundesministeriu für Bildung und Forschung

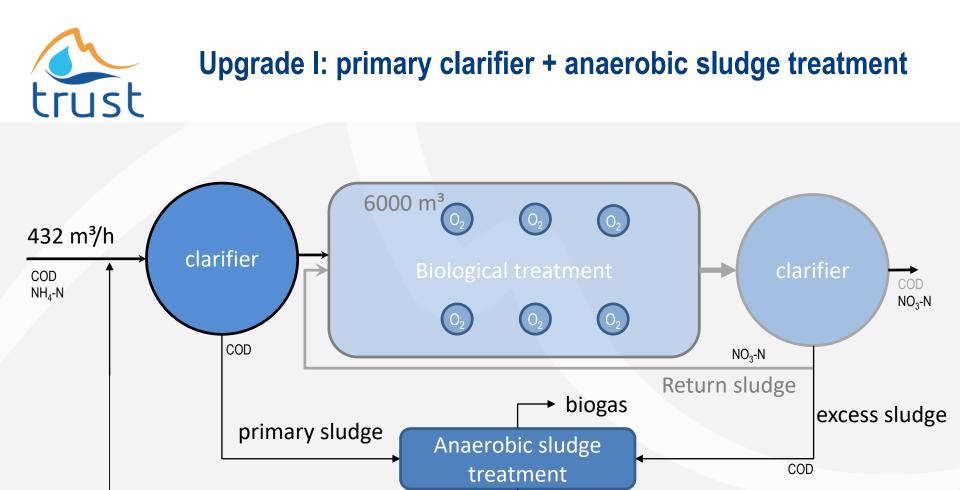
OTT

Improving the performance of WWTP

- Primary clarifier:
 - separation of primary sludge (50% COD removal; 50% SS removal);
 - utilisation in anaerobic digestor for biogas production (~50% of energy demand can be covered)
- Using membrane diffusers for oxygen supply:
 - better performance in terms of oxygen dissolution
- Denitrification:
 - use nitrate for COD-removal (recycle nitrate to pre-denitrification)



Case Study: Upgrading an existing WWTP



GEFÖRDERT VOM

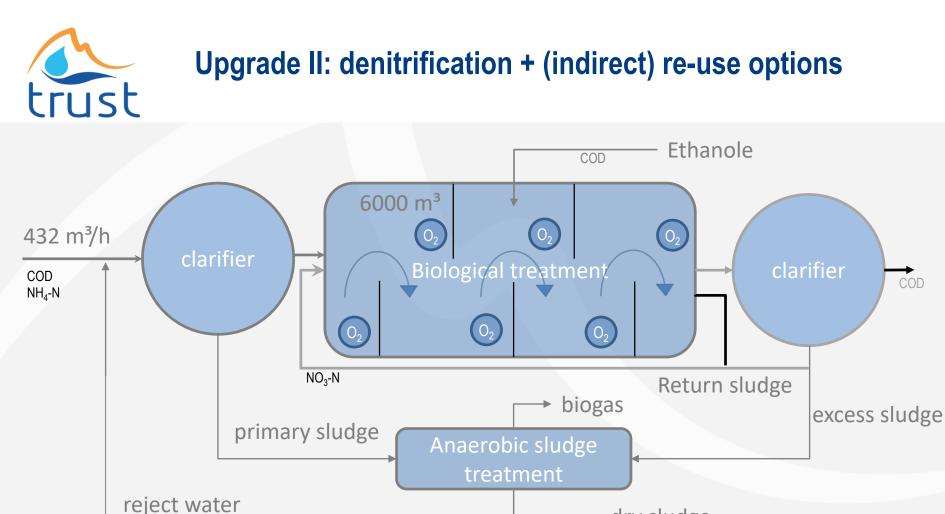
Bundesministerium

für Bildung und Forschung

Universität Stuttgart

reject water

NH₄-N



dry sludge

→ dry sludge

Expected effluent quality

Parameters*	Influent	Influent	Effluent	Effluent	Effluent
	Measured by ISWA	Grab samples (n = 63)	existing WWTP (according to german design rules – A131)	Upgrade I: Primary clarifier + anaerobic sludge treatment	Upgrade II: Nutrient removal + reuseability
Q_in [L/s]	70,3	77	70,3	120	120
COD [mg/L]	713	758	50	50	50
SS [mg/L]	204	265	<l.o.d.< td=""><td><l.o.d.< td=""><td><l.o.d.< td=""></l.o.d.<></td></l.o.d.<></td></l.o.d.<>	<l.o.d.< td=""><td><l.o.d.< td=""></l.o.d.<></td></l.o.d.<>	<l.o.d.< td=""></l.o.d.<>
TN [mg/L]	76	-	57	69,6	6,8
NO ₃ -N [mg/L]	-	-	55	67,6	~27 (6,8**)
P [mg/L]	8	-	4,4	4,7	0,5
V_biological treatment [m ³]	-	6000	1200	1500	5000
Oxygen demand [kg O ₂ /d]	-	-	1760	5000	4600 (+ 0,8 m ³ Ethanole)
Primary sludge/secondary sluge [kg oTS/d]			- / 2000	1040/2550	1040/2200
Energy (biogas, 60% CH ₄) [m³/d]				~1400	~1300
Universität Stuttgart	TEChnologiezentrum Wasser	💳 disy 🖕	ec@n	Hydromet	Bundes für Bildi und For

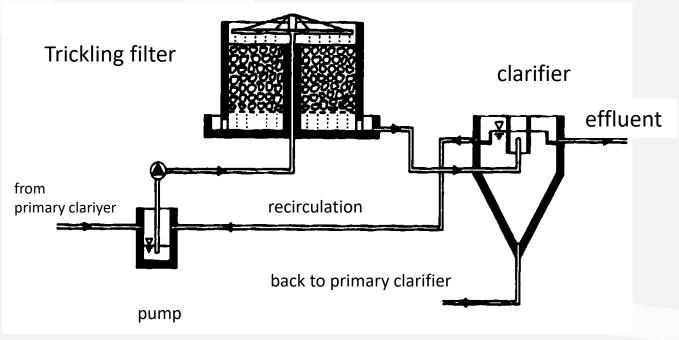
(2) Concept: Tricklingfilter

Topview of a trickling filter filled with lava rocks (Sindelfingen, Germany)

Filter material:

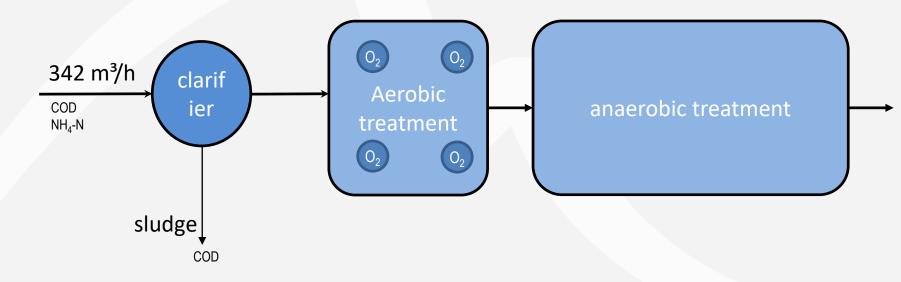
Lava rocks, Plastic profiles etc.

Topview of a trickling filter with plastic profiles

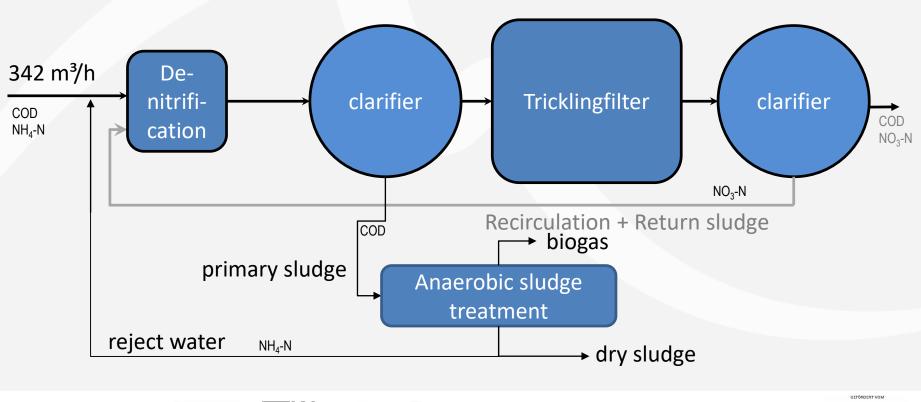


(2) Concept: Tricklingfilter

Mudrack und Kunst (2003): "Biologie der Abwasserreinigung"



Case Study: Upgrading an existing WWTP



dec () n international OTT

Hydromet

INGENIEURBÜRO PABSCH & PARTNER Bundesministerium

für Bildung und Forschung

Expected effluent quality

Parameters*	Influent	Influent	Influent	Effluent
	Measured by ISWA	Grab samples (n = 38)	Design values	for Trickling Filter
Q_in [L/s]	90	64,4	90	90
COD [mg/L]	713	1394	1394	85
SS [mg/L]	566	582	582	<l.o.d.< td=""></l.o.d.<>
TN [mg/L]	161	-	161	6
NO ₃ -N [mg/L]	-	-	-	4
P [mg/L]	8	-	8	2
V_Trickling filter [m ³]				8300
Recirculation factor				7,9 (=90 L/s x 7,9 = 711 L/s)
Primary sludge/ secondary sluge [kg oTS/d]				2700 / 2500
Energy (biogas, 60% CH ₄) [m³/d]				~2100
Universität Stuttgart		💶 disv	, dec⊛	n orr

Technologiezentrum

Wasser

uisy

international

V_DN = 3200 m³

V_PC = 3200 m³

• V_SC = 3200 m³

• 4 Trickling filters (23 m diameter, 5 m height)

Drawback:

INGENIEURBÜRO

PABSCH & PARTNER

Hydromet

٠

•

To achieve the effluent quality a lot of wastewater has to be recirculated (711 L/s + 90 L/s inflow).

GEFÖRDERT VOM

und Forschung

Bundesministerium für Bildung

(3) Slow Sand filtration: polishing reclaimed water

Slow Sand filters in India

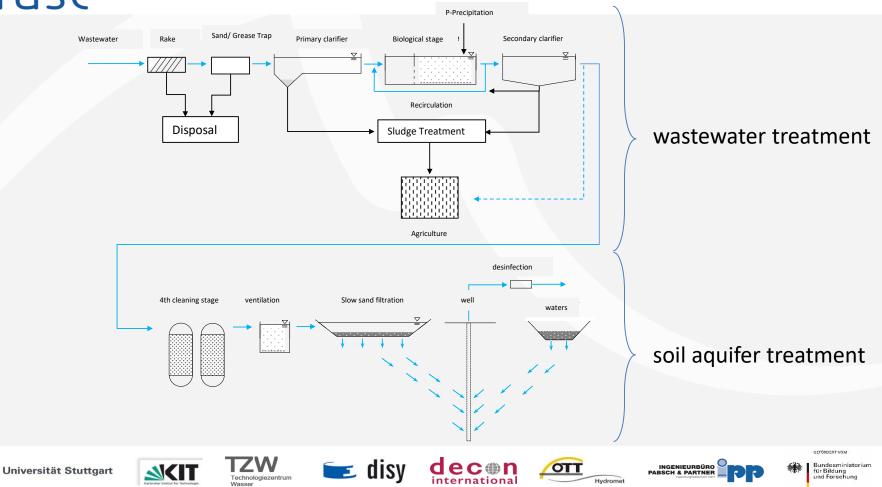
асгольсят voм Bundesministerium für Bildung und Forschung

Expected effluent quality of slow sand filters

Parameters	Influent	Effluent			
	Measured by iswa				
Q_in [L/(m² h)]	300	300			
NH ₄ -N [mg/L]	0,30	0,01			
NO ₃ -N [mg/L]	11,1	11,6			
NO ₂ -N [mg/L]	0,14	0,06			
COD [mg/L]	15	12			
Turbidity [NTU]	0,55	0,15			
Coli. Bacteria [MPN/100mL]	119	1			
Clostridium perfrigens [CBU/100mL]	10	0			
Somat. Coliphages [PFU/100mL]	2	1			

Wasser

Proposal: Quality for aquifer recharge


CIU	120					\frown			
Param	eter Unit		injection	recharge well		recharge basins			
Turbidi	ty	NTU		0.1		2		US EPA 2012	
Escher	ichia coli	KBE/100	ml	0		1000		Vilanova et al. 20)13
TOC		mg/l		1		10		Vilanova et al. 20)13
Nitroge	ene, total	mg/l		10		10		EU UWWTD 199	1
Sulfate		mg/l		150		150		Vilanova et al. 20)13
Lead		mg/l		0.0012		0.0012		LAWA 2016	
Biozide	es, total	mg/l		0.0005		0.0005		LAWA 2016	
Injection wells: Water quality requirements rather high. <u>Advanced</u> <u>treatment</u> (e.g. RO, O ₃ /BAC) necessary				Recharge basins: "Conventional" waste water treatment sufficient			waste water]	
Univ	versität Stuttgart		ZW chnologiezentrum	重 disy	d	ec@n	Hydromet		*

va et al. 2013 2016 2016 water

> GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

Overall process

Summary & Conclusion

- Water is a limited and (over-)exploited commodity. Many different users demand different water qualities \rightarrow reclaimed water can be a solution.
- Sufficient data for planning is often scarce. \rightarrow check the site, measure yourself, fill the gaps
- Wastewater treatment must be done with suitable technologies, e.g.
 - Primary sedimentation tanks (solids removal)
 - Activated sludge process
 - Tricklingfilter process
 - Desinfecction (e.g. by slow sand filtration)
 - Sludge treatment e.g. by anaerobic treatment
- Treated wastewater (reclaimed water) is a valuable commodity

Bundesministeriu für Bildung

Thank you very much!

Stephan Wasielewski

- email Stephan.Wasielewski@iswa.uni-stuttgart.de
- Tel. +49 (0)711/685-65425
- Fax +49 (0)711/685-63729

Institute for Sanitary Engineering, Water Quality and Waste Management

Department of Water Supply and Water Quality

Bandtaele 2, 70569 Stuttgart

